Journal of Organometallic Chemistry, 97 (1975) 399–403 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

COMPLEXES OF ORGANOMETALLIC COMPOUNDS

XLIII. SYNTHESIS AND INFRARED SPECTRA OF FLUORO-, CHLORO- AND BROMO-PHENYLANTIMONATES(V)

N. BERTAZZI^{*}, MARTA AIROLDI and L. PELLERITO

Istituto di Chimica Generale, Uníversità di Palermo, 90123 Palermo (Italy) (Received April 22nd, 1975)

Summary

The synthesis of halogenophenylantimonates(V) $M^{I}PhSbX_{5}$ ($M^{I} = Me_{4}N$, $Ph_{4}As$; X = F, Cl, Br) is described, and their IR spectra (1100-100 cm⁻¹) interpreted.

Introduction

A study of the formation and structure of organoantimony anionic complexes with halide and pseudohalide ligands was recently initiated in our laboratory, and the first characterization of some diphenylantimonates(V) of the type $M^{I}Ph_{2}SbCl_{3}X$ ($M^{I} = Me_{4}N$ or $Ph_{4}As$; X = Cl, Br, N_{3} , NCS) reported [1]. The preparations of solid phenylantimonates $M^{I}PhSbX_{5}$ ($M^{I} = Me_{4}N$ and $Ph_{4}As$; X = F, Cl, Br) are now described.

Although several chloro salts MArSbCl₅ (M = NH₄, PyH, ArN₂, etc.; Ar = Ph or substituted phenyl) (see for instance refs. 2-5) and one example of a bromo-derivative, PyH[β -naphtyl-SbBr₅] [3], have been known for a long time, this type of compound has been little studied, the corresponding fluoro-derivatives have not been reported. Since the literature contains practically no vibrational data for monoorganoantimony species [6], we measured the infrared spectra of the new compounds, and of NH₄PhSbCl₅, in the solid state. The data have been interpreted and principal bands assigned as far as is possible in the light of previously reported IR data for phenylantimony compounds [7-12].

Experimental

Analytical grade reagents were used. The ammonium salt, NH₄PhSbCl₅, prepared as described by Schmidt [2], was used as the source of the monophenylantimony moiety.

40	0
----	---

TABLE 1				
MELTING POINTS (°C) AND	ANALYTI	CAL DATA	IFOUND (CALCD.) %]

Compound	m.p.	Analysis					
		с	н	N	Halogen		
Me4NPhSbF5	236-239	32.62 (32.63)	4.80 (4.66)	3.91 (3.81)	25.59 (25.81)		
Ph4AsPhSbF5	196-198	52.79 (52.82)	3.83 (3.69)		13.81 (13.93)		
Me ₄ NPhSbCl ₅	198-200	26.49 (26.67)	3.91 (3.81)	3.13 (3.11)	39.28 (39.37)		
Ph4AsPhSbCl5	208-211	47.18 (47.44)	3.52 (3.32)		23.13 (23.34)		
Me4NPhSbBr5	192-195	a	2.90 (2.55)	2.20 (2.08)	59.25 (59.41)		
Ph4AsPhSbBr5	198-200	36.67 (36.70)	3.03 (2.57)		40.85 (40.70)		

a~1% error (see text).

Known amounts (~1 g) of $NH_4PhSbCl_5$ were hydrolyzed in water (at pH ~3 with dilute sodium hydroxide) to phenylstibonic acid which was separated by centrifugation and dissolved in the minimum volume (~15 ml) of a mixture aq. conc. HX/EtOH 3/1. The addition of stoichiometric amounts of M^ICl (M^I = Me₄N or Ph₄As) dissolved in the same HX/EtOH solvent mixture caused the precipitation of M^IPhSbX₅. The fluoro and chloro salts were recrystallized from EtOH or MeOH, while the less soluble bromo-derivatives were thoroughly washed with MeOH.

Typical analytical data are given in Table 1. Analyses on various samples of $Me_4NPhSbBr_5$, from different preparations, were not completely satisfactory, and the compound was contaminated by a Sb^{III}-containing species. However, the infrared spectra of the two bromo salts are similar, suggesting that the same organoantimony residue is present in both.

The infrared spectra were recorded in the ranges 4000-250 cm⁻¹ and 500-100 cm⁻¹ with Perkin–Elmer 457 and Beckman IR 12 spectrometers, respectively. Compounds were examined as Nujol mulls between KBr or polythene plates; the use of CsI plates had to be avoided as they often reacted (iodide oxidation) with the samples. Table 2 lists the infrared data in the 1100-100 cm⁻¹ region.

Discussion

Detailed assignments of vibrational bands due to phenyl ring vibrations in phenylantimony derivatives [7-12] have been almost invariably made by reference to Whiffen's assignments [13] for the monosubstituted halobenzenes, and we used the same procedure. Analysis of spectra was restricted to the region below 1100 cm⁻¹ (Table 2), where the phenyl modes (X- or mass-sensitive [13]), and the antimony—halogen vibrations occur.

Once counterion absorptions are considered (phenyl mass-insensitive modes of the Ph_4As group cannot be distinguished from the corresponding

TABLE 2

INFRARED SPECTRA OF HALOGENOPHENYLANTIMONATES M^IPhSbX₅

$\mathbf{X} = \mathbf{F}$		$\mathbf{X} = \mathbf{C}\mathbf{I}$			X = Br		Assignment ^a
$M^{I} = Me_{4}N$	$M^{I} = Ph_{4}As$	$M^{I} = NH_{4}^{b}$	$M^{I} = Me_{4}N$	$M^{I} = Ph_{4}As$	$M^{I} = Me_{4}N$	$M^{I} = Ph_{4}As$	
1090ms 1080(sh)	1085s 1075(sh)	1090vw 1060vw 1050mw	1090vw 1065(sh) 1055mw	1085ms 1070(sh) 1055w	1090vw 1060vw 1045m	1085ms 1070(sh) 1050w	d- and q(x- sens)-mode
1030mw	1025mw	1020m	1020m	1025mw 1020mw	1015mw	1025w 1015w }	b-mode
1000m	1000ms 995(sh)	995ms	1000ms	1000ms 995(sh)	990s	1000ms 995m }	p-mode
	985vw			975w	965vw	970vw }	j- and h-mode
955vs	975vw		950vs		945vs	,	ρ(CH ₃) of Me ₄ N
•	935vw 920vw 850w 845w			935vw 920vw 845vw 840vw		930vw 920vw 850vw	î-mode
	0100			04010		830vw	, moue
760vs 750vs	765ms 750(sh)	730vs	740vs	750(sh)	740vs	750s	v(SbF)
	740vs		725(sh)	740vs 725(sh)	725(sh)	740(sh) 735vs 725(sh)	f-mode
705vs	705ms						ν(SbF)
675vs	670ms	680s 660vw	685ms 670(sh)	690s 685(sh) 670(sh)	685ms 670(sh)	690(sh) 685ms 680m	<i>v-</i> and r(x- sens)-mode
620vs(br) 585vs(br) 500w	615s 590vs					}	v(SbF)
	476s 470(sh)			478ms 468s		478ms 468s 465(sh)	y(x-sens)mode of Ph4As
465s	463s	455s	462ms	462s	459s	458ms	y(x-sens)mode of PhSb
	360(sh)			366ms		365ms)	t(r-sens)mode
	354s			354ms		353ms	of Ph ₄ As
308vs 300vs	300vs			340mw		340m }	δ(SbF)
		320vs(br) 290(sh)	332(sh) 308vs 288(sh)	332(sh) 315vs 305(sh) 285(sh)		}	v(SbCl)
273(sh)	275(sh)	275(sh)	270(sh)	268mw	288ms(br)	282mw	t(x-sens)mode of PhSb?
239s	250m 240m		246ms	246m	262ms 244s	250ms 244s }	v(SbBr) u(x-sens) mode?
					226s 208s 190s	223s 210s 194m	ν(SbBr)
190m 175w	190mw 178mw		232(sh) 217ms 177s	238w 217m 177ms	178(sh) 158m 125ms	178w 160mw	skeletal de-
			138mw	140w 134w	116(sh)	118(sh)	

^aWhiffen's nomenclature [13] is used to indicate phenyl vibrations arising from Ph4As and PhSb unities. ^bSpectrum recorded to 250 cm⁻¹. vibrations of PhSb unity) no difficulty is encountered in assigning all phenyl frequencies down to 350 cm⁻¹. This procedure accounts for all bands observed in the 1100-350 cm⁻¹ region of spectra of chloro and bromo salts, but discloses four unassigned features in the range 760-580 cm⁻¹ in the spectra of the fluoro-salts. These bands may be assigned to antimony—fluorine stretchings in virtue of similar ν (SbF) frequencies reported for Me₂SbF₃ (720, 588, 550 cm⁻¹) [14] and of their average values close to the frequency ν_3 for the octahedral SbF₆⁻ anion (669 cm⁻¹ [15]; 689, 661, 649 cm⁻¹ [16]). By analogy with ν_4 for SbF₆⁻ (350 cm⁻¹) [15,16], a strong absorption around 300 cm⁻¹ (split into two components in the tetramethylammonium salt) is attributed to δ (SbF).

Assuming the probable existence in our compounds of octahedral PhSbX₅⁻ species eight infrared-active fundamentals are expected for the skeleton of C_{4v} symmetry: three SbX stretchings $(2a_1 + e)$, one SbC stretching (a_1) and four deformations $(a_1 + 3e)$. However, the appearance of four bands attributable to ν (SbX) in PhSbF₅⁻ (and possibly, in the corresponding chloro and bromo species) indicates that lower symmetries, at least as low as those taking in account the phenyl group orientation, must be considered. Because of this and the complexity of the spectra of chloro and bromo salts, an analysis of the region below 350 cm^{-1} is difficult.

Three additional phenyl vibrations of the PhSb moiety, namely the t-, uand x-(mass-sensitive)modes, are expected in this range [7-12]. Two of these, the t- and u-type vibrations, essentially corresponding to the skeletal antimony phenyl stretching and bending modes [6-8,11,12], are tentatively assigned to bands at about 270 and 240 cm⁻¹ because of their appearance in all the spectra. The assignments of ν (SbX) (X = Cl, Br) reported in Table 2 then follow. These latter are consistent with similar frequencies assigned to antimony—halogen stretchings for Me₂SbCl₃ (328 cm⁻¹ [14]; 342 cm⁻¹ [17]), MeSbCl₃ oxinate (315 cm⁻¹) [18], PhSbCl₃acac (332 cm⁻¹) [19], SbCl₆⁻ (ν_3 , 348 cm⁻¹) [20] and SbBr₆⁻ (ν_3 , 240 cm⁻¹) [21]. The phenyl x-vibration may perhaps coincide with absorptions at about 180 cm⁻¹, but this mode is generally reported as weak in the infrared spectra [8-13]. Consequently, these absorptions as well as the remaining low-frequency bands seem better assigned to skeletal deformations of PhSbX₅⁻ species.

Acknowledgements

The autors are indebted to Prof. C. Pecile, University of Padua, for the use of the far-infrared spectrometer. This work was financially supported by C.N.R. (Roma).

References

- 1 N. Bertazzi, L. Pellerito and G.C. Stocco, Inorg. Nucl. Chem. Letts., 10 (1974) 855.
- 2 H. Schmidt, Liebigs Ann. Chem., 421 (1920) 174.
- 3 P. Pfeiffer and P. Schmidt, J. Prakt. Chem., 152 (1939) 27.
- 4 G.O. Doak and H.G. Steinman, J. Amer. Chem. Soc., 68 (1946) 1987.
- 5 O.A. Reutov and A.G. Markovskaya, Dokl. Akad. Nauk. SSSR, 98 (1954) 979.
- 6 E. Maslowsky Jr., J. Organometal. Chem., 70 (1974) 153.
- 7 K.M. Mackay, D.B. Sowerby and W.C. Young, Spectrochim. Acta, Part A, 24 (1968) 611.

- 8 K. Shobatake, C. Postmus, J.R. Ferraro and K. Nakamoto, Appl. Spectrosc., 23 (1969) 12.
- 9 F.W. Parrett, Spectrochim. Acta, Part A, 26 (1970) 1271.
- 10 A.H. Norbury, Spectrochun. Acta, Part A, 26 (1970) 1635.
- 11 J.B. Orenberg, M.D. Morris and T.V. Long II, Inorg. Chem., 10 (1971) 933.
- 12 R.G. Goel, E. Maslowsky Jr. and C.V. Senoff, Inorg. Chem., 10 (1971) 2572.
- 13 D.H. Whiffen, J. Chem. Soc., (1956) 1350.
- 14 G.D. Doak and G.G. Long, Trans. N.Y. Acad. Sci., 28 (1966) 402.
- 15 G.M. Begun and A.C. Rutenberg, Inorg. Chem., 6 (1967) 2212.
- 16 L.K. Walford, R.J. Blattner, S. Feldman and R.L. Bain, Canad. J. Chem., 48 (1970) 2637.
- 17 N. Nishii, Y. Matsumura and R. Okawara, J. Organometal. Chem., 30 (1971) 59.
- 18 H.A. Meinema, E. Rivarola and J.G. Noltes, J. Organometal. Chem., 17 (1969) 71.
- 19 H.A. Meinema, A. Mackor and J.G. Noltes, J. Organometal. Chem., 37 (1972) 285.
- 20 I.R. Beattie, T. Gilson, K. Livingston, V. Fawcett and G.A. Ozrin, J. Chem. Soc. A, (1967) 712.
- 21 C.J. Adams and A.J. Downs, J. Inorg. Nucl. Chem., 34 (1972) 1829.